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Poincar6 normal forms and Lie point symmetries 

Giampaolo Cicognat§ and Giuseppe Gaeta$/l 
t Dipartimento di Fisica. Universitk di Pisa, Piazza Tomcelli 2, 1-56126 Pisa, Italy 
$ C P Th, Ecole Polytechnique, F-91128 Palaiseau, France 

Received 17 May 1993 

Abstrac; We study Poincar6 normal forms of vector, fields in the presence of symmetry under 
general--i.e. not necessarily linear-diffenmorphisms. We show that it is possible to reduce both 
the vector field and the symmetry diffeomorphism to normal form by means of an algorithmic 
procedure similar to the usual one for Paincar6 normal forms without symmetry; this 'joint' 
n o d  form can be given a simple geometdc characlerization.' 

1. Introduction 

The Poincar6Dulac theory [1-3] of analytic normal forms (NF) of an analytic ordinary 
differential equation (equivalently, vector field (VF)) in  the vicinity of an isolated fixed point 
is not only a venerable topic, hut also a powerful tool in the study of dynamical systems. 
Here we l i t  ourselves to the (properly speaking, Paincare) case in which the linear operator 
A, giving the linearization of the ODE at the fixed point (see~below), commutes with its 
adjoint, i.e. [A, A+] = 0; in other words, we treat the case where A does not contain Jordan 
blocks, or still the algebraic and geometric multiplicities of its eigenvalues are equal (we 
denote this condition as 'assumption A'). 

Some of the results we will obtain also remain valid (in some cases, if suitably modified) 
if this assumption is not verified, as we shall occasionally indicate: the extension goes along 
the lines of the extension of the Poincari to the'Poincar&Dulac theory, see e.g. [I]. 

In the case of generic Poincar.5 NF, these are nicely characterized [2,4,5] by the fact 
that the linear part of, and the full evolution operator, do commute; in other words, the 
resonant vectors are those which commute with the linear operator A. In the case of 
linearly equivariant Paincar6 NF, i.e. if the equations admit a linear symmetry, the general 
form of the Poincari NF unfolding is restricted by another commutation relation, i.e. only 
the equivariant resonant terms can appear [4]. 

Here we generalize this result to the case of nonlinear symmetries. We also obtain some 
results concerning the properties of nonlinear symmetries admitted by dynamical systems 
in NF, and the connections existing  between^ these symmetries &d the Po incd  procedure 
for transforming the system into NF. 
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2. Geometrical setting and notation 

Let us consider the space M S RN, and let M be the space of analytical vector fields in M. 
Elements of M are in correspondence with elements of V ,  the space of analytical functions 
f : M + RN such that f ( x )  E T,M; with x E M we write in component expansion (we 
will use Greek letters for elements of M ,  Roman ones for elements of V )  

G Cicogna and G Gaeta 

a 
ax' (p = f(x)a, = fyx)- .  (1.1) 

Let us define Vk c V as the space of homogeneous polynomial functions of order k in 
V ,  and let Ma be the corresponding subset of M .  

In the set M is naturally defined a bilinear antisymmetric operation [., .I. the Lie 
commutator of vector fields, with which M becomes a Lie algebra. This induces a 
corresponding Lie-Poisson bracket 1.. .) : V x V + V .  Indeed, if (p = f(x)a,, + = g(x)a,, 
then 

By means of these we define the (linear) adjoint action of e M on M itself, 
respectively of f E V on V ,  by 

ad,(.) = [(p, .I 1 LI(.) ad&) = (f, .I Lf(.). (1.4) 

It is clear that M ,  V can be decomposed as 

and it is equally clear that 

rp E M m  * t, : Mk --f M~+,-I (1.6) 

In particular, for m = 1 this shows that the decomposition (1.5) is a decomposition in 
invariant spaces under ad,, adf for (p E MI, f E V I .  

Let us now consider the flow induced in M by the vector field (0 given by (1.1); this is 
described by the equation 

f E vm + Lf : vk --f vk+m-l. 

i = f ( x ) = ( p . x  x E M ,  f : M + T M .  (1.7) 

A VF U E M will be called a (time-independent) Lie-point (LP) symmetry of (0 if and only 
if the flows of LT and (p commute; that is, 

[U,  (p] = 0 ; &(U) = 0 = L&) 

where the second line is in component notation and we write U = s(x)a,, here and in the 
following. 

{f, 4 = 0 ; Lf(S) = 0 = L,y(f) (1.8) 
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The Lie algebra of LP symmetries of ~1 (respectively of f )  will be denoted by G,+ M 
(respectively Cif s V); notice that 

(1.9) 
(1.10) 

Remark I .  Notice that if x = no is an isolated fixed point for 'p (an isolated zero for f), 
then it must also be a fixed point for U (a zero for s), on account of (1.8). From now~on 
we will assume this to be the case, and set xo = 0. 

It is therefore natural to consider the linearization of (1.7)at n = xo; this is given by 

X = AX = fo(X) A = ( D f ) ( ~ o ) .  (1.7') 

The linear operator A will play a central role in the following. We will make a fundamental 
assumption on it to simplify our work 

Assumption A. The linear operator A = (Df)(xo) commutes with its adjoint. 

In order to avoid unnecessary duplication of equations, from now on we will use only 
the setting in V, and leave to the reader the translation of OUT statements to the setting in 
M .  

Let us now expand f ,  s in terms of the decomposition (1.5); we write 

so thatby (1.6) 

adfi : vm -+ v m + k  adf, : V, + V m + k .  

We will consider in particular the linear operator 

ad, = Lfo L 

which is now decomposed as 

(1.12) 

(1.13) 

(1.14) 

so that in particular 

m e  
Ker(L) = 1 Ker(L(k)) 

Definition 1. A function 10 E V k  is called a k-resonantvector if and only if w E Ker(&) s 

Ker(Lck)) = Ker(L) n v k  . (1.14') 
k=O 

v k .  
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Remark 2. Written explicitly, the condition w E Ker(l3) becomes 
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0 = ( A X ,  w)' = Aj'xkajw' - A"wj = ( A x ) ' a j d  - (Aw)' CW' 

where L = (An) . a - A is the well known homological operator associated to A. If A is 
diagonalized (thanks to assumption A) with eigenvalues N I ,  . . . , an, and W' is a monomial 

w i = x ; n l x F  ... x p  

the above condition acquires the familiar form [ I ]  Cwi = mjuj - cl: = 0. 
Notice that under assumption A, one hast 

V = Ker(L) Ran(l3) v k  = Ker(l3n) @ Ran(&) . (1.15) 

Let us now consider h E V ,  and f, s E V such that (1.8) is satisfied; by the Iacobi identity, 
we then have 

Is, ( f 9  = If* b. hH 

which also reads 

L,s . Lf = L, ' L, 

so that (1.8) implies in particular 

ad, : Ker(ad,) -+ Ker(adf) 

Notice also that 

so that when (1.8) is satisfied 

S ad,v" : Ker(C(k)) --f Ker(L(k)). 

In terms of the expansion (l.ll), condition (1.8) reads 

m 

(1.16) 

(1.16,) 

(1.17) 

(1.18) 

(1.19) 

(1 20) 

t These decompositions can be easily verified on the basis of the monomials wi introduced in remark 2; one could 
also introduce a scalar product in the space V ,  see [4], but this is not necessary for our present purposes. 
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3. Poinear6 normal forms 

In the (Poincar6) theory of normal forms, one considers dynamical systems of the form (1.7) 
and proves that, if assumption A is satisfied, by means of formal changes of coordinates 
they can be taken to the form 

where gk E VK+I and 

go = f0 gk E KU(L(k+l)) k < k* 

fork' arbitrarily large. 

Remark 3. Notice that j o  E Ker(L(1)) by definition. 

Remark 4. 
above remark would fail; this is actually the main Teason to consider assumption A. 

If assumption A is not satisfied, L should be substituted by its adjoint, and the 

We will take formally k* = 00, so that the Poincark-Dulac theorem will read 

Theorem I (Poincard-Dulac). By means of formal changes of coordinates, it is possible 
to take the system (1.7) to the form (2.1), where g E Ker(L) = Gfo. 

In this sense, the Poincar6-Dulac procedures make explicit the symmetry of the 
dynamical system. 

Remark 5. 
(2.1) or (1.7), of the system. 

Remark 6. If the system (2.1) satisfies (2.2) with k' = n, we say %at it is in-Poincark 
normal form up to order n; when taking the formal limit n -+ 00, we speak of Poincark 
normal form, tout court. 

Since go = j o ,  the operator L is well defined and independent of the form, 

The changes of coordinates needed to transform the system to NF are of the form 

x = Y i- hdY) + Rk+i(Y) (2.3) 

where hk E Vk+l and R k  E cezA+2Vm; notice that this can be seen as corresponding to 
the (time-I) flow under the VF x = hk(x)&. 

Under (2.3). the system 

is changed into 

(2.4') 
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where 
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- 
f k  = fk - (fo. hkl = f k  - L(hd (2.5) 

so that if X is the projection 3~ : V + Ran(.L), X f k  can be eliminated by judicious choice 
of hk. The appropriate hx for this, can be determined by solving the equation (also called 
'homological equation') 

(2.6) 
Remark 7. Notice that hr is only defined up to the elements of Ker(Lw+l)); in other words, 
the changes of coordinates determined by hk and by 

Lhx = x fk . 

h'x = ha -I- 6hk Shx E Ker(LCk+l)) (27) 
lead to the same 5. 

By this remark and by (1.15) we can, under assumption A, decide to choose 

hx E Ran(L(x+~)). (2.8) 
Once hx has been fixed. any s ( x )  = cm sm(x) will be changed according to the same 
(2.4), (2.5) above; i.e. 

(2.9) 
It is perhaps worth stressing that geometrical objects, such as (o, U E M ,  are not changed 
by (2.3). which affects only their coordinate representation. In particular, Gv remains 
unchanged, so that since (o = f(x)a, = g(y)a, and fo E Gg, then there must be a VF 
U = fo(y)a, E Gp, which will be represented as U = s(x)a, in the x coordinates; if 
g(y) # fo(y) = go(y), then U # (o, and the VF (o has at least a non-trivial symmetly. 

Given a linear VF PO, one can ask to classify (the local flow of) all the VP which admit 
(oo as a linear part; in terms of the dynamical system (1.7), this amounts to classifying 
(the local behaviour of solutions of) all the systems f which have the same linearization 
( D f ) ( x o )  = A at the fixed point X O ,  f&) = Ax.  

The problem of classifying all the f as above up to formal analytic transformations, 
reduces to the problem of classifying the most general f ( x )  with linear part f&), upon 
reduction to Poincar.4 NF. 

If the above classification is meant up to equivalence by formal analytic transformations, 
the Poincar6 NF is a convenient tool; it should be stressed that if one is satisfied with 
a classification up to transformation in a different class, e.g. up to topological or CK 
equivalence, this would lead to a different kind of NF and NF reduction [I]. In the present 
paper, by NF we will always mean the Poincar.4 NF. 

- - 
8, = S, m < k Sx = Sx - [so, hk) . 

4. Symmetries and normal forms 

We now want to consider the relations between symmetry properties of (1.7) and its 
(reduction to) M (2.1). The symmetry properties of systems in NF have already been 
considered by some authors, see e.g. [4,6]; in particular Elphick et al t 141 have 
characterized the NF by means of the commutation properties between the full VF describing 
time evolution and its linear part at the fixed point xo. Indeed, with assumption A we have 
from [4]: 

t In [ZI, p 67. this theorem is quoted from [ 5 ] :  unfonunately this book is not wailable (to our knowledge) in the 
western literature. 
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Theorem 2.  
Let the VF @ E M be written in the x coordinates as 0 = f (xp, = Go + a,, where 

00 = fo(x)a,, @ I ( x )  = [f (x) - f0(x) ]&,  and fm E V,,,. Let assumption A~be satisfied. 
Then @ is in Poincar6 NF if and only if [ 4, 401 = 0. 

Corollary 1 .  
are verified (i) ( f ,  fo} = 0; (ii) @ E Ker(ad&) = GQ,,; (iii) @po E Ker(adQ) = &. 

Q is in Poincari NF if and only if the following conditions, all equivalent, 

The proof can easily be obtained from the discussion of sections 1 and 2; indeed, in 
the present notation this amounts to a corollary of the Poincari-Dulac theorem as given in 
section 2. 

Remark 8. From the point of view of symmetry properties. an interesting result comes 
from condition (iii) of the Corollary above, which states that the linear part f&) = Ax 
determines a linear LP symmetry QO = Ax& for the full problem x = f(x) [4,61. 

Remark 9. We notice that if assumption A is not satisfied, the above theorem would 
be stated with the commutator condition 101, a:] = 0 (and correspondingly modified 
conditions in the corollary). In this case, the statement of remark 8 would be substituted 
by the weaker result that the linear operator @: = A+x& is a h e a r  symmetry for the 
nonlinear part x = 41 . x (and not for the full problem). 

We want to consider here the symmetries of the original system (1.7), and how these 
are reflected into the NF coordinates. The motivation for this comes from the following 
obvious but interesting fact (see later discussion). Let rp, U E M ,  expressed in two systems 
of coordinates x and y in M as 

rp = f(x)a, = f”(y)ay = g(y)a, U = s ( x ) ~ ,  =qy)a ,  = w a y .  (3.1) 

The relation [U, rp] = 0, equivalent to rp E G,, CT E 4, is independent of the coordinate 
choice, so that 

{f, S }  = 0 w {7,3 = 0. (3.2) 

Therefore, the presence of a symmetry for (1.7) will pose some restriction to the NF (2.1): 
while in general the NF only satisfies 

f” E Ker(adf,) = Ker(L) . 

7 E Kerb&). (3.4) 

(3.3) 

In the presence of the symmetry we will also have from (3.2) that 

The combination of (3.3) and (3.4) can lead to a simplification of the NF unfolding; see 

It could be worth checking explicitly (3.2) in’the following way. Let us rewrite (1.20) 
sections 5 and 6. 

at order k as 
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and let us consider a transformation (2.3). Under this transformation 
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Ck + 2-k = ca - M O ,  b o .  hal l -  ({ fo,  hk}, SOT 

or, using Jacobi identity, 

2-k = Ck + [(SO, fo}, ha1 (3.6) 

so that [SO, fo] = 0 ==+ 5 = C,; the RHS of (3.5) remains unchanged in the change 
of coordinates, since it contains only terms of degree smaller than k, and so the whole 
equation (3.5) is invariant. 

Remark IO. Notice that if S is a linear operator such that [ A ,  SI = 0 and if A satisfies 
assumption A, then also [ A ,  S+] = 0; which implies that S + S+ and S - S+ commute 
with A.  Then, we can assume that the linear p" S % (Ds)(,w,) of the symmetry U 

satisfies assumption A.. In the following we will use freely the fact that both S and A satisfy 
assumption A,. and denote ads, by S. It should be stressed that if assumption A is not 
verified, the results stated in theorem 3 below fail to be true, in general. 

We will find it useful to have the following lemma, which easily follows from the Jacobi 
identity. 

Lemma 1. Let U, w E V such that U, w E Ker(L). Then [u,  U} E Ker(L). 

We also have the following 

Theorem 3. Let 0 E M be expressed in Poincarb NF as Q, = f ( x ) a , ;  then any U such 
that [a, Q] = 0 is expressed in thex coordinates as a = s(x)& where 8 e Ker(L). In other 
words, all LP symmetries CT of a dynamical system in NF, which are obtained as formal 
series expansion, are also LP symmetries of the linearized system x = f o ( x )  = A x .  

Proof. We can proceed recursively using the set of equations (3.5). Fork = 0, {fo, SO] = 0 
is satisfied, see (1.18); for k = 1 we have 

~ f o . S 1 . l + I f i , ~ o ~ = o .  (3.7) 

Applying L: to this equation, we obtain 

, w ( J l N  5s {fox I fo ,  SII}  = 0 (3.8) 

being {fo,(fl, S O } }  = 0. Using (1.15) one has 

Lcsl) = 0 or' SI E Ker(L). (3.9) 

The argument can be repeated recursively for each k: indeed, [fi, SO] E Ker(L) for lemma 1, 
and similarly if sj E Ker(L), V j  < k, then also ut E Ker(L). Therefore, again using (1.15), 
(3.5) can be solved. only with 

L ( s ~ )  = O  and S ( h )  = uk (3.10) 

and this completes the proof. 
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It was remarked in section 2 that the hk identifying the normalizing transformation are 
identified by solutions of the homological equation (2.6) only modulo Ker(L), see remark 7. 
This means that once the system is in NF we can still apply changes of coordinates of the 
form 

x = Y + Shdy) Shk E Ker(L(k+l)) (3.11) 

without modifying f ( x ) .  Under this change of coordinates, sk will be changed to 

(3.12) 

Notice that if sk E Ker(L), so does Fk, see (1.19). By appropriately choosing Sha E 
Ker(L(k+l,), we can therefore eliminate the component of sk in Ker(L) nRan(S). We have 
therefore proved following. 

Proposition 1. Let f ( x )  be in NF, and let s ( x )  be a symmetry off (n). Then it is possible 
to choose coordinates in which f (x )  is still in NF and such that s E Ker(L) n Ker(S). 

Remark 12. Just as in 'the reduction to PoincarL NF, this change of coordinates will in 
general be purely formal. 

Remark 13. We always have fo E Ker(L) n Keds); notice that fors = f we have S = L, 
and indeed s = f E Ker(L) rl Ker(S) 

- s,, = ~k - (SO, Shk) E ~k - S(6ht) .  

Ker(L); the symmetry f will be called hivial. 

The above proposition suggests the following. 

Definition 2. A VF 
U = s(x)& is in NF if s E Ker(L) n Ker(S)i with S = ad,To. 

= f (x )&  is in NF if f E Ker(L), with L = adlo; its symmetry VF 

5. Determining equations for vector fields in normal forms 

Let us consider f given and try to determine its symmetries s; in order to do this we 
have to consider again the relation (1.20), to be regarded as the determining equation fors. 
We will assume f ( x )  is in NF, and look for solutions s ( x )  which are in NF as well, i.e. 
s E Ker(L) n Ker(S); the proposition 1 above ensures that we are correct to restrict to 
such s. 

At order k the determining equations are, see (3.5). 

L(s,)-S(fa)=Uk u o = u l = o .  (4.1) 

Remark 14. If for all j < k it happens that f;. E Ker(S), and then necessarily 
fi E Ker(L) n Ker(S) since f is in NF; then also uk E Ker(L) n Ker(S). 1ndeed;~this 
just follows from lemma 1 of the previous section. 

Lemma 2. If f(x) and its symmetry s ( x )  are in NF according to the above definition, then 

f E Ker(L) n Ker(S) s E Ker(L) rl Ker(S) 

~Prouf. The resolt for s comes directly fromdefinition 2.  if f is in NF, then f E Ker(C); 
it follows from (4.1) that if there is an m such that fi E Ker(S) for all j < m, then 
f E Ker(S). Indeed, if uk E Ker(S), then S ( f k )  = 0. It suffices now to check that 
f l  c~Ker(S), as follows from (4.1) fork = 1. 
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Remark 15. The above lemma restores the symmetry of roles between f and s. 

Remark 16. If f and s are in NF, we Can still make a change of coordinates (2.3) generated 
by Ahk E Ker(C) fl Ker(S); such a transformation will neither change fk nor sk. 

It is remarkable that equations (4.1) are of the same form as the full determining 
equations (1.20) for the fields (f - f a )  and (s - so); we could therefore repeat the above 
discussion and continue iteratively. With the notation (r > 1) 

m *-I 

= f m  E f - f m  (4.2) 

C['] = a d p  I: z C[oI Si'] = ad,vI S z SLo] (4.3) 

m=r m=o 

(so that fLol  '= f, dol = s) we would arrive at the conclusion that if a, U E M satisfy 
[Q, U ]  = 0 and are in NF when expressed as = f ( x ) a , ,  U = s(x)a,, then for any r 3 0 
both f['] and srr1 are in Ker(St'1) n Ker(L1"). 

Remark 17. With this notation, and recalling (1.18), it can immediately be checked that 
(f, s) = 0 enforces (f[". &I} = 0: indeed, if, s} = [fa + f['], SO -t d l l ]  and due to 
f, s E Ker(C) n Ker(S), we just have (f, s) = If['], srll}. 

Notice that now we can define 

(so that vioJ = uk) and (f{l], d l l ]  = ~ O  now reads 

Crrl(Sk) - S['l(fk) = U!' k r (4.4) 
with r = 1. By repeating the discussion iteratively, we get the equation for generic r > 0. 

We will summarize ow discussion by stating the following 

Theorem 4. Let @ = g(y)a,, U = t(y)ay, where g(y), t(y) E V satisfy (s, f] = 0. Then 
by means of formal changes of coordinates (1.3) we can take them to the form 6 = f(x)a,, 
U = s(x)a,, where go = fo, to =SO and, with C = ad,,, S = ad.yo, 

f E Ker(S) n Ker(C) 

f['] E Ker(S[']) n Ker(C['I) 

Remark 18. This theorem can be seen as a generalization of theorem 4 of 141 to the case 
of nonlinear symmetries; see this also for the generalization to the case in which fo does 
not meet assumption A. 

Remark 19. After the completion of the present work, professor Duistermaat pointed out 
that this result can be obtained in an alternative way based on the remark that the changes of 
variables (2.3) amount to the adjoint action of h E V on V, so that the kernels considered in 
the above theorem 4 are necessarily invariant and provide a classification of NF equations. 
This can also be seen as a consequence of arguments concerning filtration of Lie algebras 
applied to NF reduction, which are contained in the thesis by Broer [7]. Our present 
discussion and statement of results has nevertheless the advantage of being completely 
elementary and explicit. 

s E Ker(S) n Ker(C) . 
Moreover, with the notation (4.3). (4.4), in the same coordinates we also have 

sLrl E Ker(S[']) n Ker(C[?l). 
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6. Unfoldings of equivariant normal forms 

We now want to discuss how the above theorem 4 is of help in the determination of 
equivariant normal forms mfoldings, i.e. in the classification of systems i = f ( x )  and 
symmetries s ( x )  of these with given (necessarily commuting) linear parts fo, so. 

In this respect, it is useful to remark that in view of the discussion in the previous 
section, we can restate our theorem 4 as 

Proposition 2.  let f ( x )  be in NF;.the necessary and sufficient condition for s (x)  to be a 
s y m e h y  of f in NF is that, with the notation introduced above, the equation 

L['1(Sk) - S["(fk) = u p  

is satisfied for all r and for all k > r .  

In many (indeed most) concrete applications, one has to deal with symmetry vectors 
I that are linear or quadratic; it is therefore worth discussing briefly these special cases, which 

will also make clear the general procedure. 
If the symmetry is linear, 

s =SO E Ker(L) (5.1) 

so that s E Ker(L)nKer(S) is trivially satisfied. The determining equations, or equivalently 
the condition f E Ker(L) n Ker(S), now imply that 

( f k , ~ o ] = O  V k a O .  (5.2) 

Correspondingly, the equivariant NF unfolding for (5.1) can be determined order-by-order. 
Notice that, writing so(x) = Sx, (5.2) is equivalent to 

f k ( S X )  = Sfk(x)  Yk  > 0 .  (5.3) 

In the same vein, writing fo(x) = Ax,  the condition f ' ~  Ker(L) reads 

f k ( A ~ )  = Afk(x)  Vk 2 0 .  (5.4) 

Notice that 

{fo, sol = 0 * [ A ,  SI = 0 (5.5) 

so that we fully recover the setting of [4]. 
In the case of given quadratic symmetries (already in NF), s = sofsl, we can proceed in a 

similar way. First of all, f E Ker(L) ensures that (5.4).does apply, and f E Ker(L)nKer(S) 
again yields (5.3). Now we do also have f"' E Ker(Sl), which enforces 

{fk, SI] = 0 Yk 1. (5.6) 

We can therefore still determine the equivariant normal form unfolding order-by-order. 
In this quadratic case, we can Write 

st = lremn x ne] = (5.7) 1 L m  
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with r a symmetric tensor: (5.6) does now read 
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It is clear that the same procedure can be applied for the determination of the equivariant 
NF unfolding under given arbitrary s E V (provided of course that s E Ker(L) n Ker(S)); 
at order k, we just have 

fx E Fk = Ker(L) n Ker(S) n Ker(SII1) n . . . r l  Ker(S[‘]). (5.9) 

Notice that at any finite order we have to solve a finite number of algebraic equations of 
the form 

Fork = r + 1, (4.4) reduces to 

which also means, repeating previous considerations, 

f,+l E Ke@) n Ker(S[‘]) s,+l E Ker(L[‘l) n Ker(S[‘]) . (5.12) 

In particular, if A,s, have be en^ determined for j e k = r + 1, then (5.11) and 

This means that we can just limit ourselves to solving recursively equations of the form 

lfi.  SkI = 0 L[kl(sk+l) = S [ W k + l ) .  (5.13) 

This also permits one to classify the commuting pairs (f, s) with given (necessarily 
commuting) linear parts ( fo , so) ,  up to formal analytical equivalence, i.e. of solving 
the general problem of equivariant unfoldings of the M. Indeed, OUI discussion can be 
summarized as follows. 

{fk, sk} = 0 and {fk, sk) determine fi, Sk. 

Theorem5. Let 40, UO E M I  belinearVFs, O0 = fo(x)a,, a0 = so(x)a,, with f o ( x )  = A x ,  
sdx) = S ( x ) ,  A and S satisfying assumption A, and [OO, a01 = {fo, so} = [ A ,  SI = 0. Then 
for any pair 4, U E M of VFS, 4 = g(y)a,, U = t (y )a , ,  such that 14, U] = {g ,  t )  = 0 and 
(Dg)(O) = A, (Dt)(O) = S, there is aformal change of coordinates taking them to the form 
Q, = f ( x ) & ,  d = s(x)&, with fa = go = Ax, so =to = Sx, fm, s, E Ker(,C[k])nKer(S[kl) 
for any m < k,  and L[k’(sk+l) = S[x] ( fk+~) .  

Corollary 2. For given commuting A ,  S, satisfying assumption A, the equivariant normal 
form unfolding can be determined by solving recursively equations of the form L[kl(sk+~) = 
S[kl(fi+l) and L[”(SX) = 0 = Srtl(fd. 
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7. Examples and discussion 

The classical problem of finding the most general form of a dynamical system in NF once 
its linear part f&) = Ax is given, has already been examined from the point of view of 
the symmetry properties [2,4-81: for a generic A (i.e. not necessarily satisfying assumption 
A), the result can be written 

X = Ax + K(K(x ) )x  . (6.1) 

where K is the most general matrix such that 

K A +  = A+K (6.2) 

and the entries Kij of K are functions of the constants of motions K = K ( X )  of the linear 
system 

X = A ' x .  (6.3) 

Some special cases are discussed in [8]. The fact that K satisfies (6.2) and its elements 
depend on the system (6.3) involving A+ and not A, clarifies the relevance of assumption A 
in the context of symmetry properties. In particular, it is now clear why, if [A, A+] # 0, the 
linear symmetry A+.& is a symmetry for the nonlinear part, and not for the full problem 
(see remarks 8 and 9). 

Remark 20. If the nonlinear terms were resonant with A+ (not with A), then U = ( A x ) &  
would be a linear symmetry for the full problem (for some other considerations on this 
situation, see [6]). 

A very well known case of a reduction to NF concerns the classical two-dimensional 
Hopf periodic bifurcation problem: the matrix A has eigenvalues rti, and the problem in 
iw exhibits an explicit rotation covariance. As a trivial application of our above results; let 
us notice that this problem in NF cannot possess, in agreement with theorem 3, a scaling 
symmetsy along one axis, i.e. a symmetry of the form 

. .  

U' = ua, 

where U is either x or y (with ( x ,  y )  E R'). Instead, the presence of a scaling symmetry in 
the plane 

U = x a , + y a ,  (6.4) 

which in fact is admitted by theorem 3, would imply that the problem is trivially a linear 
problem. 

A less trivial example is the following. With ( x ,  y , z )  E R3,  let us consider the system 

X = x - y r  2 ) i = y + x r 2  r Z = x 2 + y Z  z = ( y  + xr2)z (6.5) 

which corresponds, in the expansion in homogeneous terms r p ~  E Vx+l, to 

2 (o,, = xa, + y a y  
( p 3 = r x z a i  2 pj=O j ) 4 .  

cpl = Yza, rpz = ~ r  (xa, - ya,) 
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This is symmetric under (see 191) 
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c =s(x)a, =soa,+sla, (xay - y u  +xzaZ. (6.7) 

The above system is not in NF (actually, all nonlinear terms in (6.5) are non-resonant): 
accordingly, we have that SI Ker(L) and s 6 Ker(L) (or, which is the same, U is not a 
LP symmetry for the linear pact of (6.5)-see theorem 3). 

Writing now a generic polynomial VF as 

h = ( i z )  

the action of C. is given by 

xux + y f f y  - (Y 

and it can immediately be checked that 

(6.8) 

(6.9) 

(6.10) 

As for S = ad,, its action is given by 

- Y a y  + B 
S(h) = ( xBy + YBX -a) (6.11) 

XYY - YY.  

and one can check that 

ci = ~ ( z ,  r2)x +Z(z,  rZ)y 
-g(z, r2)x +i?(z, r2)y  

Z(z, r2 )  
h E Ker(S) e (6.12) 

so that in particular 

(Y = a(z)x +b(z )y  
h E Ker(C.) rl Ker(S) e ( ,9 = -b(z)x + a ( z ) y  ) . (6.13) 

\ y  = e(z) 1 
Let us now proceed to the normalizing quadratic transformation; the homological equation 
is 

which gives trivial equations for (Y and S, and 

x Y x f Y Y y = Y Z  

(6.14) 

(6.15) 
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so that 

or=p=o;  y = y z + c i z  c E R  

i.e. x, y are not changed, and 

z = (1 + Y E .  

5 = f l  - Ifo, hl} = 0 

With the hl given by (6.16), 

SI =SI - {XO, h,} = SI - S(h,) .  

Using (6.11) we immediately have 

(6.16) 

(6.17) 
(6.17') 

(6.18) 

which means 

(6.19) 

The above calculations can be extended to the higher orders, and one can see that the results 
(6.17) and (6.19) are true to all orders: indeed, as already remarked, all terms in (6.5) are 
non-resonant; once reduced to Np, the system becomes a linear system and 

?. 

s , = o .  

U = $,,a, = xa, - ya, (6.20) 

is (trivially) a symmetry for it. 

( x , Y , z ) E R ~ ,  
We can also give examples containing resonant terms. Consider, e.g., again with 

.i = ~x - y(1 +rZ)  
i = 22 + 2hy2 + 2xy(l+ r2) - 2yZz + y4. 

y =by +x( l  +r2)  r2 = x2 + y2 
(6.21) 

If h = 0, then yr2, xr2 and i2 are resonant terms; if h # 0, then only zz is resonant. In 
both cases a LP symmetry for the system is [9] 

U = r a y  -yay +zXya,. (6.22) 

Once the system (6.21) is reduced to NF, and all non-resonant terms are dropped, its 
symmetry becomes (both for A = 0 and # 0) the rotation symmetry (6.20). in agreement 
with theorem 3. 

Let us point out finally that all our results concern symmetries U which are obtained as 
series expansions. Other symmetries are actually possible, as this example shows. Consider 
the problem in R2, in Np: 

.i = -13  y = - y .  (6.23) 

One of the symmetries of this problem is U = e-'12.'a,, which cannot be obtained as a 
series expansion and which is not a symmetry for the linearized problem (or equivalently 
s $ Ker(C.)): this is not in contrast with the conclusion of theorem 3; in fact, the series 
expansion of the VF defining this symmetry would be identically zero. Other symmetries of 
the above dynamical system, e.g. x3a, or yay, do actually satisfy the hypotheses (and the 
conclusions as well) of the theorems given above. 
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